跳转至

BICG

约 160 个字 预计阅读时间 1 分钟

Initialization:

  • Choose an initial guess \(x_0\).
  • Compute the initial residual \(r_0=b−Ax_0\).
  • Set the initial shadow residual \(r'_0=r_0\)(or another suitable initial residual vector).
  • Initialize the search directions \(p_0=r_0\)and \(p'_0=r'_0\).

Iteration: For \(k = 0, 1, 2, \ldots\) until convergence:

  1. Compute Matrix-Vector Products:
    • \(v = A*p_k\)
    • \(A^T*p'_k\)
  2. Compute the Alpha Coefficient:
    • \(\alpha_k = \frac{r_k^T r_k'}{(A p_k)^T p_k'}\)
  3. Update the Solution:
    • \(x_{k+1} = x_k + \alpha_k p_k\)
  4. Update the Residuals:
    • \(r_{k+1} = r_k - \alpha_k A p_k\)
    • \(r_{k+1}' = r_k' - \alpha_k (A^T p_k')\)
  5. Check for Convergence (e.g., if \(\|r_{k+1}\|\) is sufficiently small, stop the iteration).
  6. Compute the Beta Coefficient:
    • \(\beta_k = \frac{r_{k+1}^T r_{k+1}'}{r_k^T r_k'}\)
  7. Update the Search Directions:
    • \(p_{k+1} = r_{k+1} + \beta_kp_k\)
    • \(p_{k+1}' = r_{k+1}' + \beta_kp'_k \)

Output:

  • The approximate solution \(x_{k+1}\).